SERIES WITH POSITIVE MEMBERS (criteria)

Consider a number series $a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$ with positive members. The sum is $S_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{k=1}^{n} a_k$, and we call it **partial sum**.

We are looking for $\lim_{n\to\infty} S_n$.

If $\lim_{n\to\infty} S_n = S$ (number) then series **converges**, and if $\lim_{n\to\infty} S_n = \pm \infty$ or does not exist, then the series **diverges**. This means that series converges when the sequence S_n of partial sum has a finite limit and if the limit of partial sum is infinitive or does not exist, the series diverges.

Cauchy criteria (test)

Necessary and sufficient condition for $\sum_{n=1}^{\infty} a_n$ to converges is that for arbitrary $\varepsilon > 0$, there is a natural number $N = N(\varepsilon)$ so that for $n > 0 \land p > 0$ is true : $|S_{n+p} - S_n| < \varepsilon$

Theorem: If the series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n = 0$, if $\lim_{n \to \infty} a_n \neq 0$ then line certainly does not converge.

Comparable criteria:

Valid for two series
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$
i) If $a_n < b_n$ then a) $\sum_{n=1}^{\infty} b_n$ convergent $\Rightarrow \sum_{n=1}^{\infty} a_n$ convergent
b) $\sum_{n=1}^{\infty} a_n$ divergent $\Rightarrow \sum_{n=1}^{\infty} b_n$ divergent
ii) If $\frac{a_{n+1}}{a_n} < \frac{b_{n+1}}{b_n}$ then a) $\sum_{n=1}^{\infty} b_n$ convergent $\Rightarrow \sum_{n=1}^{\infty} a_n$ convergent
b) $\sum_{n=1}^{\infty} a_n$ divergent $\Rightarrow \sum_{n=1}^{\infty} b_n$ divergent

iii) If $\lim_{n \to \infty} \frac{a_n}{b_n} = M$, (M \neq 0 and M is a finite number) series simultaneously are convergent or divergent

Most often series we used for comparison is $\sum_{n=1}^{\infty} \frac{1}{n^k}$; for k>1 series is convergent, for k ≤ 1 is divergent.

D'Alember criteria

If for series $\sum_{n=1}^{\infty} a_n$ there is $\overline{\lim_{n \to \infty}} \left| \frac{a_{n+1}}{a_n} \right| = r$ then :

- For r > 1 series is divergent
- For r = 1 undecidable
- For r < 1 series is convergent

Roots Cauchy criteria :

If for series
$$\sum_{n=1}^{\infty} a_n$$
 there is $\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}} = p$ then :
For $p > 1$ series is divergent

- For p = 1 undecidable
- For p < 1 series is convergent

Raabe criteria :

-

If for series
$$\sum_{n=1}^{\infty} a_n$$
 there is $\lim_{n \to \infty} n(\frac{a_n}{a_{n+1}} - 1) = t$ then :

- For t > 1 series is convergent -
- For t = 1 undecidable -
- For t < 1 series is divergent -

<u>Gauss criteria</u> If for series $\sum_{n=1}^{\infty} a_n$ there is

$$\frac{a_n}{a_{n+1}} = \lambda + \frac{\mu}{n} + o(\frac{1}{n^{1+\varepsilon}}) \quad \text{for} \quad \forall \varepsilon > 0 \text{ then}:$$

- If $\lambda > 1$ series is convergent i) If $\lambda < 1$ series is divergent ii)
- If $\lambda = 1$ then $\begin{cases} \text{for } \mu > 1 \text{ is convergent} \\ \text{for } \mu < 1 \text{ is divergent} \end{cases}$

iii)

Cauchy integral criteria

If the function f (x) decreases, it is continuous and positive , then series $\sum_{n=1}^{\infty} f(n)$ convergent or divergent simultaneously with integral $\int_{1}^{\infty} f(x) dx$